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ABSTRACT

Human metapneumovirus (HMPV), a recently discovered paramyxovirus, infects nearly 100% of the world population and
causes severe respiratory disease in infants, the elderly, and immunocompromised patients. We previously showed that HMPV
binds heparan sulfate proteoglycans (HSPGs) and that HMPV binding requires only the viral fusion (F) protein. To characterize
the features of this interaction critical for HMPV binding and the role of this interaction in infection in relevant models, we uti-
lized sulfated polysaccharides, heparan sulfate mimetics, and occluding compounds. Iota-carrageenan demonstrated potent an-
ti-HMPV activity by inhibiting binding to lung cells mediated by the F protein. Furthermore, analysis of a minilibrary of vari-
ably sulfated derivatives of Escherichia coli K5 polysaccharide mimicking the HS structure revealed that the highly O-sulfated K5
polysaccharides inhibited HMPV infection, identifying a potential feature of HS critical for HMPV binding. The peptide den-
drimer SB105-A10, which binds HS, reduced binding and infection in an F-dependent manner, suggesting that occlusion of HS
at the target cell surface is sufficient to prevent infection. HMPV infection was also inhibited by these compounds during apical
infection of polarized airway tissues, suggesting that these interactions take place during HMPV infection in a physiologically
relevant model. These results reveal key features of the interaction between HMPV and HS, supporting the hypothesis that apical
HS in the airway serves as a binding factor during infection, and HS modulating compounds may serve as a platform for poten-
tial antiviral development.

IMPORTANCE

Human metapneumovirus (HMPV) is a paramyxovirus that causes respiratory disease worldwide. It has been previously shown
that HMPV requires binding to heparan sulfate on the surfaces of target cells for attachment and infection. In this study, we
characterize the key features of this binding interaction using heparan sulfate mimetics, identify an important sulfate modifica-
tion, and demonstrate that these interactions occur at the apical surface of polarized airway tissues. These findings provide in-
sights into the initial binding step of HMPV infection that has potential for antiviral development.

Acute viral respiratory tract infection is the most frequently
observed illness in humans worldwide (1). Human metap-

neumovirus (HMPV), an enveloped, negative-sense, single-
stranded RNA virus in the Paramyxoviridae family, is a common
cause of both upper and lower respiratory tract infections (2–4).
First identified in 2001 in the Netherlands, HMPV is now known
to be the cause of respiratory infections in humans since at least
1958 (2). Nearly every person is exposed to HMPV in the first
decade of life; seroconversion occurs on average by the age of 5
years, and nearly 100% of individuals test seropositive for anti-
body reactivity to HMPV antigens by the age of 10 (5). In children,
HMPV infection is the second most common cause of hospital-
ization due to respiratory infection after the closely related respi-
ratory syncytial virus (RSV) (6, 7). Although infants are consid-
ered the most vulnerable population to illness from HMPV,
adults can develop severe respiratory disease as well, especially
the elderly, immunocompromised patients, and individuals
with chronic underlying diseases (8–10). In addition to upper
respiratory involvement with symptoms typically associated with
the common cold, HMPV infection can result in serious lower
respiratory syndromes such as pneumonia, bronchitis, and bron-
chiolitis (3, 11). Due to the recent ability to routinely detect this
virus through the inclusion of HMPV in multiplex detection as-
says, HMPV has been associated with disease outside the respira-
tory tract in some cases, including viral encephalopathy (12–14)

and acute myocarditis (15), from initial respiratory involvement.
Despite this tremendous clinical burden, there is no known vac-
cine to prevent HMPV infection, and treatment options are lim-
ited to administering ribavirin, which does not have established
efficacy against HMPV infection (16).

Key features of HMPV entry into target cells to establish infec-
tion have been characterized recently. HMPV utilizes heparan sul-
fate (HS) present on the cell surface to bind to target cells (17),
followed by clathrin-mediated endocytosis and membrane fusion
in endosomes (18). Integrin �V�1 has also been shown to play a
role for efficient HMPV entry (17, 19) and has been proposed to
be involved in attachment (20). HS is a negatively charged poly-
saccharide belonging to the family of glycosaminoglycans com-
posed of repeating disaccharide units formed by glucosamine and
glucuronic acid, which can undergo a series of modifications dur-
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ing the biosynthesis, leading to very heterogeneous chains. In HS
the glucosamine can be N-acetylated, or N-sulfated and O-sul-
fated, in various positions and to various degrees. Glucuronic acid
can also be modified by epimerization.

HSPGs have been implicated in virus-cell interactions for
other viruses, including RSV (21–23), human papillomavirus
(HPV) (24), herpes simplex virus (HSV) (25–28), human immu-
nodeficiency virus (HIV) (29–31), and others (reviewed in refer-
ence 32). We have previously shown that nearly complete reduc-
tion in HMPV binding and infection results when HS is removed
from the cell surface using heparinases, whereas cells that are able
to synthesize only HS, and not any other GAGs, are fully able to
bind HMPV (17). Unlike other paramyxoviruses that require two
distinct viral glycoproteins to mediate attachment and binding,
the fusion protein (F) of HMPV is sufficient for binding and in-
fection (33–35). Recombinant HMPV that does not have the at-
tachment protein (G) or the small hydrophobic protein (SH) is
able to bind cells at wild-type (WT) levels via HS (17). Thus, the
putative interaction between the HMPV F and HS provides an
opportunity for antiviral development.

In this study, we describe the potent anti-HMPV effects of the
sulfated polysaccharide, iota-carrageenan, in models of respira-
tory epithelial cells and polarized airway tissues, indicating that
the HS-F interaction is important in physiologically relevant
models. To further characterize structural features of HS impor-
tant for binding by HMPV F, we utilized a minilibrary of variably
sulfated derivatives of Escherichia coli K5 polysaccharide, which
revealed that the critical common feature required for effective
inhibition of binding and infection is O-sulfation. In addition, we
showed that occluding heparan sulfate with the peptide den-
drimer SB105-A10 inhibits the binding interaction between
HMPV F and target cells and airway tissues. These results provide
additional support for a role for HS-HMPV F protein interactions
in physiologically relevant models and identify key features of the
interaction between HMPV and HS that have implications for
infection in vivo and may serve for antiviral development.

MATERIALS AND METHODS
Cells and tissues. Vero cells were grown in Dulbecco modified Eagle me-
dium (Gibco) supplemented with 10% fetal bovine serum (FBS). A549
cells were grown in Roswell Park Memorial Institute medium (RPMI;
Lonza) supplemented with 10% FBS. BEAS-2B cells, a human bronchial
epithelial cell line, obtained from ATCC, were maintained in BEGM me-
dium containing all the recommended supplements (Lonza) in flasks
coated with bovine collagen (Sigma), bovine fibronectin (VWR Scientific)
and bovine serum albumin (EMD Millipore). All cells were grown at 37°C
under 5% CO2.

Well-differentiated (transepithelial resistance � 1000 �) primary
normal bronchial human airway epithelial (HAE) tissue cultures were
purchased from MatTek Corp. (Ashland, MA). Cell culture inserts were
placed atop two washers (MatTek) in six-well plates with 5 ml of AIR 100
growth medium (MatTek) in contact with the basal surface and incubated
at an air-liquid interface at 37°C and 5% CO2. Tissues were maintained for
5 to 7 days for differentiation after arrival by washing the apical surface
with 0.9% sodium chloride and changing the media every 48 h prior to
initiation of the infection experiments.

Antibodies. A rabbit polyclonal antibody against avian metapneumo-
virus (AMPV) C matrix (M) protein supplied by Sagar Goyal (University
of Minnesota) with cross-reactivity to HMPV M was used to detect
HMPV M protein by Western blotting (36). Antipeptide antibodies to
HMPV F (Genemed Synthesis, San Francisco, CA) were generated
using amino acids 524 to 538 of HMPV F (37). All other antibodies

were purchased from the various companies: �-actin (Sigma) and per-
oxidase AffiniPure goat anti-rabbit IgG and goat anti-mouse IgG
(Jackson ImmunoResearch).

Heparan sulfate mimicking and occluding compounds. Iota-carra-
geenan was purchased from Sigma (Invitrogen). Peptide dendrimer
SB105-A10 ([H-ASLRVRIKK]4 Lys2-Lys-�-Ala-OH) was synthesized by
Lifetein with a purity of �95%. Escherichia coli K5 polysaccharides deriv-
atives were provided by David Lembo and Glycores 2000 (38).

Cell viability assay. Approximately 10,000 BEAS-2B or A549 cells
were grown in triplicate overnight in a 96-well plate. BEAS-2B cells were
either incubated with 2 �M SB105-A10 for 1 h, 40 �g of iota-carrageen-
an/ml for 4 h, or 10 �M concentrations of each of the K5 derivatives for 4
h at 37°C. A549 cells were incubated with 2 �M SB105-A10 for 1 h at 37°C.
Control cells were incubated with Opti-MEM, which was used to dilute all
of the compounds. Then, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-
tetrazolium bromide (MTT; Fisher Scientific) (5 mg/ml) was added, fol-
lowed by incubation for 3 h at 37°C. The medium was removed from the
cells by tapping the plate and blotting the excess liquid. Next, 100 �l of
stop solution (90% isopropyl alcohol, 10% dimethyl sulfoxide) was
added, and the plate was incubated at room temperature for 20 min in the
dark with rocking. The absorbance was read at 590 nm using a plate
reader. The absorbance of treated cells was normalized to the untreated
control.

Virus propagation and titers. The recombinant, green fluorescent
protein (GFP)-expressing HMPV (rgHMPV) strain CAN97-83 (genotype
group A2) and the mutant viruses HMPV �G and HMPV �G/�SH with
a codon-stabilized SH gene (39) were kindly provided by Peter L. Collins
and Ursula J. Buchholz (NIAID, Bethesda, MD). The viruses were prop-
agated in Vero cells (starting multiplicity of infection [MOI], 0.01 to
0.03), followed by incubation at 37°C with Opti-MEM, 200 mM L-glu-
tamine, and 0.3 �g of TPCK (tolylsulfonyl phenylalanyl chloromethyl
ketone)-trypsin (Sigma)/ml, replenished every day. On day 5, or when
cytopathic effects were observed in at least 25% of the cells, the cells and
medium were collected and subjected to centrifugation at 2,500 � g for 10
min at 4°C on a Sorvall RT7 tabletop centrifuge. The supernatant was then
stored in 1� sucrose phosphate glutamate (SPG; 218 mM sucrose, 0.0049
M L-glutamic acid, 0.0038 M KH2PO4, 0.0072 M K2HPO4), and aliquots
were flash frozen in liquid nitrogen and thawed twice prior to storage
at 	80°C. To achieve more concentrated rgHMPV for HAE tissue exper-
iments, supernatants of harvested cells and medium were subjected to
centrifugation on a 20% sucrose cushion for 3 h at 27,000 � g at 4°C using
a SW28 swinging-bucket rotor on a Beckman Optima L90-K ultracentri-
fuge. After centrifugation, the supernatant was removed, and the pellet
was resuspended in 100 �l of Opti-MEM per T75 flask, harvested, and left
at 4°C overnight. Aliquots were stored at 	80°C by flash freezing in liquid
nitrogen.

Recombinant GFP-expressing parainfluenza virus 5 (rgPIV5) was
kindly provided by Robert Lamb (Howard Hughes Medical Institute,
Northwestern University) (35). rgPIV5 was propagated in MDBK cells as
described previously (40) and stored in 1� SPG. Aliquots were frozen in
liquid nitrogen and thawed twice prior to storage at 	80°C.

For GFP-expressing viruses (rgHMPV and rgPIV5), viral titers were
calculated by creating serial dilutions of the viral samples in Opti-MEM.
Vero cells were seeded on a 96-well plate overnight and infected in serial
dilution (10	1 to 10	12) with 50 �l of virus solution in duplicate. The
number of GFP-expressing cells was counted in wells demonstrating 25 to
100 GFP-positive cells the following day. The average titer was calculated
based on the dilution of the virus solution in the wells counted.

For non-GFP expressing viruses (HMPV �G and HMPV �G/�SH)
viral particles were estimated using serial dilutions of viral samples as-
sessed for M protein content using Western blotting and compared to
protein levels of an rgHMPV standard of known titer. The volumes of
untitered virus and the rgHMPV standard of a known concentration (2, 4,
and 8 �l in duplicate) were resolved using SDS–15% PAGE, and the pro-
teins were transferred to a polyvinylidene difluoride membrane (Fisher)
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at 50 V for 80 min. The membrane was blocked with Odyssey blocking
buffer (Li-Cor) at 4°C overnight, followed by incubation with anti-AMPV
M antibody (1:500) in PCT (phosphate-buffered saline [PBS; Invitrogen]
with casein and 0.2% Tween 20) for 3 h at room temperature. The mem-
brane was washed with t-TBS (0.2% Tween 20 in 1� TBS [Tris-buffered
saline]) and incubated with peroxidase AffiniPure goat anti-rabbit sec-
ondary antibody (1:10,000) in PCT for 1 h at room temperature. The
membrane was washed with t-TBS and incubated with SuperSignal West
Pico chemiluminescent substrate (Fisher) for 10 min in the dark prior to
development by using enhanced chemiluminescence. Densitometry was
quantified using ImageQuant TL, and an average density units of M pro-
tein per �l of virus input was calculated for each sample. The titer was
determined by comparing to the standard of known titer.

Cell infection assay. BEAS-2B cells were grown to low confluence
(approximately 50,000 cells per well [as recommended by the American
Type Culture Collection]) in a 24-well plate overnight. Iota-carrageenan
solution was freshly prepared in PBS at 0.7 mg/ml by incubation at 55°C
with brief vortexing. The virus was pretreated with iota-carrageenan or K5
polysaccharide derivatives diluted in Opti-MEM for 30 min at 4°C with
rocking. The cells were washed two times with PBS, and 200 �l of virus
solution was added at an MOI of 1. For SB105-A10 experiments, BEAS-2B
or A549 cells were washed twice with PBS, followed by incubation with
200 �l of SB105-A10 diluted in Opti-MEM at variable concentrations at
37°C for 1 h. The cells were washed once with PBS and infected with 200 �l
of virus solution in Opti-MEM at an MOI of 1. For all treatments, the cells
were incubated with the infection media in duplicate for 2 h at 37°C with
rocking every 30 min. After 2 h, the cells were washed twice with PBS, and
the infection medium was replaced. For GFP-expressing virus, after an
overnight incubation, the cells were resuspended, fixed in 2% formalde-
hyde diluted in PBS with 50 mM EDTA, and analyzed with a BD
FACSCalibur flow cytometer, for which the GFP expression of at least
10,000 cells was determined. Data analysis was performed using FCS Ex-
press software, and the data presented in the graphs represent the percent-
age of GFP-expressing cells as a percentage of the untreated control as
previously described (17).

HAE infection assay. HAE tissues were maintained according to the
manufacturer’s recommendations for 5 to 7 days after arrival. The tissues
were transferred to a new six-well plate with 1 ml of HEPES-buffered
saline (HBS; 150 mM NaCl, 20 mM HEPES [pH 7.5], 1 mM MgCl2, 1 mM
CaCl2) and washed with 400 �l of sterile 0.9% NaCl. The apical surface
was washed three times with 75 �g of lysophosphatidylcholine (LPC;
Sigma)/ml in HBS for 10 min at room temperature (41). LPC was re-
moved from the apical surface, and HBS was removed from the basal
surfaces of the tissues, and 1 ml of AIR 100 growth medium was added to
the basal side. To measure the effects of heparan sulfate mimics, rgHMPV
or rgPIV5 at an MOI of 5 (this calculation was based on 0.8 � 106 cells per
tissue according to the manufacturer) was pretreated either with 40 �g of
iota-carrageenan/ml, 10 �M K5-N,OS (H), or 10 �M K5-OS(H) (un-
treated control received Opti-MEM) in a total volume of 100 �l. For
SB105-A10, the tissues were treated with 2 �M SB105-A10 in Opti-MEM
for 1 h at 37°C prior to infection (untreated control tissue was incubated
with Opti-MEM). The infection solution (100 �l at an MOI of 5) was
added to the apical surface of the tissues dropwise, and the tissues were
incubated at 37°C for 2 h with rocking every 30 min. After 2 h, the infec-
tion medium was aspirated, and the apical surface washed 1� with 200 �l
of HBS. Fresh AIR 100 growth medium with 0.3 �g of TPCK-trypsin/ml
was added to each well, followed by incubation at 37°C. After 48 h, the
apical surfaces of the tissues were imaged for GFP expression using an
Axiovert-100 (three fields per tissue) at �5 magnification. The number of
infected cells was determined by counting the GFP-expressing cells and
then averaged per tissue. The results are reported as the percent infection
of the untreated control.

Cell binding assay. Approximately 250,000 BEAS-2B cells were cul-
tured overnight in a six-well plate. rgHMPV was pretreated with iota-
carrageenan at 40 �g/ml or a 1 �M concentration of the K5 polysaccha-

ride derivatives diluted in Opti-MEM for 30 min at 4°C with rocking. For
SB105-A10 treatment, the cells were washed twice with PBS, followed by
incubation in a 200-�l solution of SB105-A10 diluted in Opti-MEM at
37°C for 1 h. For all treatments, the cells were washed twice with cold PBS
and infected with 500 �l of virus solution at an MOI of 1 for 2 h at 4°C with
rocking to prevent internalization. The cells were washed with PBS three
times, lysed using 45 �l of RIPA buffer with 0.15 M NaCl with a complete
protease inhibitor cocktail tablet (Fisher), and frozen at 	20°C. The cells
were thawed and scraped on ice, and the lysates were cleared by centrifu-
gation for 10 min at 55,000 rpm at 4°C (Sorvall Discovery M120). Western
blot analysis for M to quantify bound HMPV was carried out as described
above.

Statistical analysis. All data are presented as means 
 the standard
deviations of a minimum of three independent experiments. A standard
Student t test or one-way analysis of variance (ANOVA) was performed
when appropriate to analyze the differences between the individual exper-
iments with statistical significance set as P � 0.05. A post hoc Bonferroni’s
multiple-comparison test (GraphPad Prism) was used within one-way
ANOVA to identify specific differences between groups.

RESULTS
Iota-carrageenan inhibits HMPV infection in human respira-
tory cells. To dissect how interaction with HS regulates HMPV
infection in physiologically relevant models and to determine
whether blocking this interaction could be a potential antiviral
approach, we utilized a sulfated polysaccharide, heparan sulfate
mimetics and a compound that occludes HS in combination with
infection studies in human bronchial epithelial cells (BEAS-2B) or
human airway epithelial (HAE) models. Sulfated polysaccharides
have been previously used to target viral infection, including a
number of studies with carrageenans, which are isolated from red
seaweed (42). Carrageenans are composed of sulfated repeating
galactose units (Fig. 1B). The three types of known carrageenans
(iota, lambda, and kappa) differ in number and positions of sul-
fate groups (reviewed in reference 42). Carrageenans have shown
antiviral activity against a number of viral pathogens, including
HPV (43), HIV (44), dengue virus (45), and influenza A virus
(46). Importantly, iota-carrageenan has been used safely in hu-
man trials in the form of a nasal spray to reduce viral infection
(47–49).

To verify that sulfated polysaccharides would inhibit HMPV
infection in a relevant cell culture model, we first determined the
anti-HMPV activity of iota-carrageenan, a well-characterized sul-
fated polysaccharide that has been shown to inhibit the infection
of other viruses that bind HS. Infection of BEAS-2B cells was per-
formed using a recombinant HMPV (strain CAN97-83, clade A2)
that results in green fluorescent protein (GFP) expression as a
surrogate measure for infectivity, which was quantified by flow
cytometry. Pretreatment of HMPV with iota-carrageenan re-
sulted in inhibition of infection, with nearly a complete reduction
in infection achieved with 10 �g of iota-carrageenan/ml (Fig. 2A
and C). To determine whether iota-carrageenan had a nonspecific
antiviral effect, paramyxovirus parainfluenza virus 5 (PIV5),
which does not utilize HS for binding, was used. Incubating
rgPIV5, a recombinant PIV5 virus that results in GFP expression,
with iota-carrageenan prior to infection did not inhibit infection
of BEAS-2B cells at any of the concentrations used compared to
the untreated control (Fig. 2B and C). Similar effects of iota-car-
rageenan on rgHMPV and rgPIV5 infection were observed in
Vero cells (data not shown). These results indicate that HS-
HMPV interactions are critical in BEAS-2B cells and that iota-
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carrageenan has anti-HMPV activity, most likely attributed to its
sulfated structure.

Our previous studies suggested that HMPV binds to HS via the
F protein, and we hypothesized that iota-carrageenan is inhibiting
HMPV infection by competing with HS binding sites located in
HMPV F. To test this, HMPV was added to BEAS-2B cells at 4°C,
allowing for binding to occur but not infection, and the amount of
bound virus was quantified by detection of the HMPV matrix
protein present in cell lysates by Western blotting, with �-actin as
a loading control. Pretreating HMPV at an MOI of 1 with 40 �g of
carrageenan/ml for 30 min at 4°C prior to addition to the cells
resulted in about 85% inhibition of particle binding compared to
the untreated control (Fig. 2D and E), demonstrating that iota-
carrageenan competes with the binding of HMPV to HS. Of the
three glycoproteins in the viral envelope of HMPV (the attach-
ment protein G, the small hydrophobic protein SH, and F), only F
is required by HMPV to be infectious; recombinant HMPVs with-
out G or SH, HMPV �G and �G�SH, respectively, are able to
bind cells at wild-type levels (17) and are replication competent in
a nonhuman primate model of infection (34). To test whether
iota-carrageenan inhibition of HMPV binding and infection is
dependent exclusively on F, we pretreated the recombinant
HMPV �G and �G�SH with iota-carrageenan and determined
the effects on overall infection and binding in BEAS-2B cells. Iota-
carrageen inhibited HMPV �G and �G�SH binding to a degree
similar to that demonstrated by wild-type HMPV (Fig. 2D and E),
which supports the hypothesis that interaction between HMPV
and HS is mediated by F. Interestingly, a greater fraction of input
particles of �G and �G�SH HMPV than WT HMPV bound to
BEAS-2B cells, suggesting that �G and �G�SH HMPV binding to
BEAS-2B cells was more efficient on a per particle basis (Fig. 3A).
The input number of particles for all three virus samples was ver-
ified for each experiment and was not statistically different across
all binding assays completed (Fig. 3B), demonstrating that in-

creases in particle numbers did not cause the observed increase in
binding for �G and �G�SH HMPV. To address the possibility
that the �G and �G�SH recombinant viruses had greater F con-
tent that contributes to increased binding in BEAS-2B cells, the
ratio of F to M protein in WT, �G, and �G�SH HMPVs was
determined by Western blotting (Fig. 3C). No difference in the
F/M ratio was detected between WT HMPV and the recombinant
viruses, indicating that increased binding is not due to increased
per particle F protein levels (Fig. 3D). Thus, the reasons for these
unexpected results remain to be determined. However, despite
increased binding at the baseline, iota-carrageenan did inhibit the
binding of �G and �G�SH HMPVs to the same degree as did WT
HMPV (Fig. 2E). These findings suggest that iota-carrageenan
inhibits the binding of WT and recombinant HMPVs without G
and SH in a manner that is dependent on F and not the other
surface glycoproteins.

The results in a monolayer respiratory cell model support the
hypothesis that HMPV F mediates a key binding interaction to
HS, and this event can be inhibited using the highly sulfated poly-
saccharide, iota-carrageenan. However, a monolayer cell culture
model is limited in the ability to recapitulate the complex features
of the respiratory epithelium, which include moving cilia, mucus,
distinct cell types with important physiological roles, and polarity
maintained by tight junctions. Furthermore, immortalized cells
highly express HSPGs in a pattern that may be different than com-
plex organized tissues found in vivo, and immunohistochemistry
studies have not detected significant amounts of HS on the apical
surface of human airway, raising concerns that HS interactions
may be less important in an airway model (50). We therefore
examined the effect of sulfated polysaccharides in a polarized hu-
man airway tissue model (HAE; MatTek) that more closely reca-
pitulates the complexity of the human airway, which is the pri-
mary site of HMPV infection. HAE tissues have been previously
used as models of respiratory virus infection, including human

FIG 1 Representative structures. (A) Heparan sulfate disaccharides modified by the following possible substitutions: Ac � acetyl; R � H or SO3	; R=� H, Ac,
or SO3

	 (60). (B) Iota-carrageenan structure (42). (C) SB105-A10. (D) K5 polysaccharide derivatives.
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FIG 2 Iota-carrageenan inhibits HMPV infection in cells and tissues by blocking binding. (A) BEAS-2B cells infected with rgHMPV at an MOI of 1 was
treated with variable concentrations of iota-carrageenan. Cells were imaged 24 HPI. (B) BEAS-2B cells were infected with rgPIV5 at an MOI of 1 treated
with 40 �g of iota-carrageenan/ml or vehicle. Cells were imaged at 24 h postinfection. (C) Quantification of rgHMPV and rgPIV5 infection in BEAS-2B
cells using flow cytometry to detect GFP expressing cells 24 h postinfection. The data are presented as a percent infection of the untreated control (0
�g/ml) for each virus. Data points are means 
 the standard deviations of duplicate measurements and are representative of a minimum of three
independent experiments. *, Statistical significance (P � 0.0001). (D) HMPV viruses (WT and recombinant mutants �G and �G�SH) were treated with
vehicle or 40 �g of iota-carrageenan/ml and added to BEAS-2B cells at an MOI of 1 at 4°C for particle binding. Lysates of washed cells were analyzed for
HMPV binding by Western blotting for M. Input represents 5% WT HMPV was added to the cells for binding. No virus was added to mock-infected cells.
�-Actin served as a loading control. (E) Band intensities of the matrix protein and �-actin were determined for untreated and treated (40 �g/ml
iota-carrageenan) samples. The data are reported as a ratio of M to �-actin normalized to the untreated control for each virus. Data points are means 

the standard deviations of measurements representative of seven independent experiments. *, Statistical significance (P � 0.0001). (F) HAE tissues were
infected with rgHMPV or rgPIV5 at an MOI of 5 treated with 40 �g of iota-carrageenan/ml or vehicle and imaged at 48 h postinfection at �5
magnification. (G) Quantification of HAE tissue infection. Data points are means 
 the standard deviations of triplicate measurements and are
representative of a minimum three independent HMPV infection experiments. *, Statistical significance (P � 0.0001).
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parainfluenza virus 3 (51), rhinovirus (52), human bocavirus 1
(53), and RSV (54).

To test whether iota-carrageenan inhibits HMPV infection in
the HAE model, iota-carrageenan-treated rgHMPV was used to
inoculate the apical surfaces of the HAE tissues, and a significant
reduction in infection of approximately 75% was observed (Fig.
2F and G). Unlike rgHMPV, treatment of rgPIV5 with iota-carra-
geenan had no effect on infection in the airway tissues (Fig. 2F and
G). These findings indicate that HMPV interactions with HS are
also important in complex polarized airway tissues that histolog-
ically resemble the human respiratory tract and support the hy-
pothesis that HMPV requires HS to establish infection at the api-
cal surface of the respiratory epithelium.

O-sulfated K5 polysaccharide derivatives inhibit HMPV in-
fection. Although our preliminary results strongly support a key
role for HS in HMPV infection, the specific features of HS re-
quired remain to be determined. A class of molecules mimicking
HS and thus possible inhibitors of HS-virus interactions is repre-
sented by the sulfated derivatives of the E. coli capsular K5 poly-
saccharide (Fig. 1D). K5 polysaccharide derivatives are heparan-
like molecules devoid of anticoagulant activity obtained by the
sulfation of the E. coli capsular K5 polysaccharide that has the
same structure of the biosynthetic precursor of HS, N-acetyl hepa-
rosan. A small library of derivatives with different degrees of sul-
fation has been synthesized using chemical and enzymatic modi-
fications (38). Sulfated K5 derivatives have been shown to inhibit
infection in other viruses in a specific manner, including HPV

(43), RSV (55), dengue virus (56), cytomegalovirus (CMV) (57),
HSV-1 and HSV-2 (58), and HIV (59). Analysis of the anti-HMPV
activity of these compounds can therefore be used to identify
structural features that are important for recognition by HMPV F
and potentially help to identify a potent HS mimic.

Because HS is negatively charged due to sulfate modifications
on the disaccharide units, we hypothesized that charge-charge in-
teractions contribute to the binding between F and this polysac-
charide. Therefore, we predicted that the most highly sulfated K5
derivatives, mainly K5-N,OS(H), and K5-OS(H), would have the
greatest inhibitory effect on HMPV infection. To test this,
rgHMPV at an MOI of 1 pretreated with the derivatives at 1 �M
was used to inoculate BEAS-2B cells. As predicted, the highly sul-
fated K5 derivatives, K5-N,OS(H) and K5-OS(H), dramatically
inhibited infection (Fig. 4A). Among the lower sulfated deriva-
tives, K5 and K5-NS did not have an observable effect on HMPV
infection when examined by microscopy (Fig. 4A), whereas K5-
N,OS(L) and K5-OS(L) (Fig. 1D) also inhibited HMPV infection
dramatically. K5-NS, which has a single sulfate in position 2 of
glucosamine, had no effect on HMPV infection (Fig. 4A), indicat-
ing a key role of O-sulfate groups in the observed inhibition.
When HMPV was treated with variable concentrations (10 nm to
1 �M) of the K5 derivatives and used to infect BEAS-2B cells, flow
cytometry analysis of infected cells revealed a dose-dependent in-
hibition of HMPV infection by all the O-sulfated K5 derivatives
(Fig. 4B). K5-NS had no effect on HMPV infection, whereas some
inhibition resulted from K5, although only at the highest concen-

FIG 3 Recombinant �G and �G�SH HMPV exhibit enhanced binding to BEAS-2B cells compared to WT HMPV. (A) HMPV viruses (WT and recombinant
mutants �G and �G�SH) were added to BEAS-2B cells at an MOI of 1 at 4°C for particle binding. Lysates of washed cells and 5% of each virus volume added to
cells for binding were analyzed for HMPV binding by Western blotting for M. The band intensities of the matrix protein and �-actin were determined for input
and bound. The data are reported as a ratio of the percent bound M to the input. Data points are means 
 the standard deviations of measurements representative
of five independent experiments. *, Statistical significance (P � 0.05). (B) The input of the three viruses was determined by Western blotting by detection of M
and quantified by calculating the band intensity. The data are reported as an estimated number of particles added to cells in the binding assays. Data points are
means 
 the standard deviations of measurements representative of three different experiments. (C) HMPV viruses (WT and recombinant mutants �G and
�G�SH) were analyzed by Western blotting for F and M. (D) The relative band intensities were quantified. The data are reported as a ratio of the mean F to the
mean M abundance and are representative of three independent experiments.
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FIG 4 O-sulfated K5 polysaccharide derivatives inhibit HMPV infection in BEAS-2B cells by competing for binding. (A) BEAS-2B cells were infected with
rgHMPV at an MOI of 1 treated with a 1 �M concentration of each K5 polysaccharide derivative or vehicle. The cells were imaged at 24 h postinfection. BEAS-2B
cells were infected with rgHMPV (B) or rgPIV5 (C) at an MOI of 1 treated with a 10 nM, 100 nM, or 1 �M concentration of each K5 polysaccharide derivative
or vehicle. Infection was quantified by flow cytometry to detect GFP-expressing cells at 24 h postinfection. The data are presented as the percent infection of the
untreated control. Data points are means 
 the standard deviations of duplicate measurements and are representative of a minimum of three independent
experiments. Single (*) and double (**) asterisks indicate statistical significances of P � 0.01 and P � 0.0001, respectively. (D) WT HMPV was treated with vehicle
(untreated) or a K5 polysaccharide derivative at 1 �M and added to BEAS-2B cells at an MOI of 1 at 4°C for particle binding. Lysates of washed cells were analyzed
for HMPV binding by Western blotting for M. No virus was added to mock-infected cells. �-Actin served as a loading control. (E) Band intensities of the matrix
protein and �-actin were determined for untreated and treated (1 �M) samples. The data are reported as a ratio of M to �-actin normalized to the untreated
control for each virus. Data points are means 
 the standard deviations of measurements representative of five independent experiments. *, Statistical
significance of P � 0.001; **, statistical significance of P � 0.0001. (F) BEAS-2B cells were treated with 40 �g of iota-carrageenan/ml, 10 �M concentrations of
each of the K5 polysaccharide derivatives, or vehicle (untreated) in triplicate and assayed for viability by using an MTT cell viability assay according to the
manufacturer’s protocol. The absorbance at 590 nm was normalized to the untreated control. Data points are means 
 the standard deviations of triplicate
measurements and are representative of three independent experiments.
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tration (Fig. 4B). The reduction of infection by the K5 polysaccha-
ride was not expected, and the mechanism of this action remains
unclear since it did not affect HMPV binding (Fig. 4D and E).
None of the K5 polysaccharide derivatives had an effect on PIV5
infection (Fig. 4C). In addition, treatment of BEAS-2B cells with a
10 �M concentration of the K5 polysaccharide derivatives, the
concentration used in HAE infection experiments and 10-fold
higher than the highest concentration used in cell infection assays,
did not reduce cell viability, as measured by an MTT cell viability
assay (Fig. 4F). Similarly, treatment of BEAS-2B cells with the
highest concentration of iota-carrageenan tested in the infection
assays did not reduce cell viability, demonstrating that its antiviral
activity is not a consequence of cytotoxicity (Fig. 4F). To deter-
mine whether the K5 compounds inhibit HMPV infection by
competition, the binding assay described in the carrageenan stud-
ies was used. rgHMPV was treated with a 1 �M concentration of
each of the K5 polysaccharide derivatives prior to incubation with
BEAS-2B cells at 4°C at an MOI of 1 to allow for binding to take
place. Although unmodified K5 and K5-NS, which have a single
N-linked sulfation modification, had no effect on viral binding,
the higher-sulfated compounds, K5-N,OS(L) and K5-OS(L), and
the highly sulfated compounds K5-N,OS(H) and K5-OS(H) re-
duced HMPV binding to BEAS-2B cells significantly (Fig. 4E).

To confirm these findings in a physiologically relevant tissue
model, we determined the effect of K5-N,OS(H) and K5-OS(H),
which had the greatest inhibition of HMPV infection in mono-
layer cells, in polarized airway tissues. HAE tissues were infected at
the apical surface with rgHMPV or rgPIV5 at an MOI of 5 pre-

treated with 10 �M K5-N,OS(H) or K5-OS(H), or Opti-MEM. At
48 h postinfection, we observed a dramatic reduction in infected
cells at the apical surface (Fig. 5A). Quantification of GFP-ex-
pressing cells revealed an approximately 70% reduction in HMPV
infection compared to the control (Fig. 5B), whereas PIV5 infec-
tion was not reduced (Fig. 5A and B). Taken together, these data
suggest that highly sulfated K5 derivatives effectively inhibit bind-
ing and infection of HMPV and that O-sulfation is an important
structural feature required for the interaction to occur, and thus
these findings strongly support the hypothesis that HMPV inter-
action with HS plays a significant role during apical infection.
However, for in vivo utility, it is likely such compounds would
require optimization to achieve a higher degree of inhibition of
infection.

Heparan sulfate occlusion inhibits HMPV infection and
binding. We have shown that HMPV F mediates a binding inter-
action to HS that can be inhibited both in cell culture and tissue
models using iota-carrageenan and a small library of K5 polysac-
charide derivatives. As an alternative mechanism to characterize
the interaction between HMPV and HS, we examined the effect of
blocking HS moieties on the target cell, thus making heparan sul-
fate unavailable for binding. There is a 2-fold logic to investigating
the effect of a heparan sulfate-occluding compound on HMPV
binding. The removal of HS caused a robust block in HMPV in-
fection (17); however, HSPGs have critical constitutive and in-
duced interactions with other cellular proteins (reviewed in refer-
ence 60), and removing HS may interrupt these interactions,
causing cellular changes. HS occluding compounds that prevent

FIG 5 Highly sulfated K5 polysaccharide derivatives inhibit HMPV infection in HAE. (A) HAE tissues were infected with rgHMPV or rgPIV5 at an MOI of 5
treated with 10 �M K5-N,OS(H) or K5-OS(H) or with vehicle (untreated) and imaged at 48 h postinfection at �5 magnification. (B) Quantification of HAE
tissue infection. Data points are means 
 the standard deviations of triplicate measurements and are representative of a minimum of three independent
experiments. *, Statistical significance (P � 0.0001).
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further ligand binding are less likely to disrupt preexisting HS
interactions and therefore serve as an alternative approach to ad-
dress the direct interaction of HMPV with HS. Furthermore, a
compound that occludes HS and inhibits HMPV infection may
serve as a potential building block for antiviral development for
HMPV and other viruses that are known to bind HS.

To accomplish this, we utilized a previously characterized
heparan sulfate occluding compound, peptide dendrimer SB105-

A10 (54, 61, 62). Peptide dendrimers, branched synthetic mole-
cules that consist of a peptidyl branching core and covalently
attached surface peptide units, have a number of potential appli-
cations, especially in relation to the development of antiviral
agents. The peptide dendrimer SB105-A10 (Fig. 1C), which has a
branched peptide core with clusters of basic residues that bind to
negatively charged sulfate and carboxyl groups, has been shown to
specifically occlude ligand binding from HSPGs (61, 62). Further-

FIG 6 Peptide dendrimer SB105-A10 inhibits HMPV infection in human lung cells by inhibiting binding. (A) BEAS-2B cells treated with 1 �M
SB105-A10 or vehicle were infected with rgHMPV or rgPIV5 at an MOI of 1. The cells were imaged at 24 h postinfection. The percent infection of rgHMPV
and rgPIV5 at an MOI of 1 treated with variable concentrations of SB105-A10 in BEAS-2B (B) and A549 (C) cells was quantified using flow cytometry. The
percent infection is reported normalized to the untreated control for each virus type. Data points are means 
 the standard deviations of duplicate
measurements and are representative of a minimum of three independent experiments. An asterisk (*) indicates statistical significance (P � 0.0001). (D)
HMPV viruses (WT and recombinant mutants �G and �G�SH) were added to BEAS-2B cells treated with vehicle or with 1 �M SB105-A10 at an MOI
of 1 at 4°C for particle binding. Lysates of washed cells were analyzed for HMPV binding by Western blotting for M. Input represents 5% of WT HMPV
added to the cells for binding. No virus was added to mock-infected cells. �-Actin served as a loading control. (E) Band intensities of the matrix protein
and �-actin were determined for untreated and treated (1 �M SB105-A10) samples. The data are reported as a ratio of M to �-actin normalized to the
untreated control for each virus. Data points are means 
 the standard deviations of measurements representative of five independent experiments. *,
Statistical significance (P � 0.0002). (F) BEAS-2B and A549 cells were treated with 2 �M SB105-A10 or vehicle (untreated) and assayed for viability by
using an MTT assay. The absorbance at 590 nm was normalized to the untreated control. Data points are means 
 the standard deviations of triplicate
measurements and are representative of three independent experiments.
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more, SB105-A10 has previously been reported to exhibit antiviral
activity against RSV (54), CMV (61), HIV (62), HPV (63), and
HSV-1 and HSV-2 (64), as well as some filoviruses (65).

To determine whether SB105-A10 reduces HMPV infection in
human lung epithelial cells, BEAS-2B cells were treated with
SB105-A10 at 1 �M prior to infection with rgHMPV at an MOI of
1, and the cells were imaged 24 h later for GFP expression; rgPIV5
was used in control studies to determine specificity. SB105-A10
treatment resulted in dramatic inhibition of HMPV infection,
whereas PIV5 infection was not reduced (Fig. 6A). We performed
quantification of the effects of SB105-A10 on rgHMPV or rgPIV5
infection by flow cytometry for GFP expression 24 h postinfec-
tion. In these experiments, both BEAS-2B and A549 cells were
used to determine whether the effect of SB105-A10 is cell type-
dependent, since this compound is mediating its effects by inter-
acting with the target cell. In BEAS-2B cells, a dose-dependent
inhibition of approximately 70% of rgHMPV infection resulted
with SB105-A10 treatment, whereas rgPIV5 infection was not af-
fected (Fig. 6B). Similar results were seen in A549 cells (Fig. 6C).
In addition, treatment of BEAS-2B cells 2 �M SB105-A10, the
highest concentration used in any cell or tissue experiments, did
not reduce cell viability, as measured by an MTT cell viability assay
(Fig. 6F). Based on our hypothesis of HMPV attachment, we pre-
dicted that SB105-A10 inhibits infection by blocking particle
binding, specifically by preventing the interaction between hepa-
ran sulfate and F. To address this, we utilized a binding assay with
WT HMPV, �G HMPV, and �G�SH HMPV to determine the
effects of SB105-A10. BEAS-2B cells were treated with 1 �M
SB105-A10 or Opti-MEM prior to the addition of HMPV at an
MOI of 1. The cells were incubated at 4°C for 2 h to allow for
binding, and then cell lysates were analyzed for M by Western
blotting to determine binding. A significant reduction in viral
binding was observed in WT HMPV and the recombinant �G
HMPV and �G�SH HMPV with SB105-A10 treatment (Fig. 6D
and E). As was observed in binding assays with iota-carrageenan
(Fig. 2D), greater baseline binding was observed for �G HMPV
and �G�SH HMPV compared to the WT (Fig. 6D), although the
same levels of reduction in binding were observed with SB105-
A10 (Fig. 6E).

To determine the effect of SB105-A10 in polarized tissues, the
apical surfaces of HAE tissues were treated with SB105-A10 at 2

�M prior to infection with rgHMPV or rgPIV5 at an MOI of 5.
Treatment with SB105-A10 resulted in a reduction of HMPV in-
fected cells 48 h postinfection, whereas PIV5 infection was not
inhibited (Fig. 7A). Quantification of infected cells revealed
a �50% reduction in HMPV infection at the apical surface with
SB105-A10 treatment compared to vehicle-treated control tissues
(Fig. 7B). Altogether, these results indicate that the occlusion of
HS moieties on target cells inhibits HMPV binding and infection
mediated by HMPV F and further support that HS is available for
viral binding at the apical surface of the airway. Furthermore,
based on our results, occlusion of HS could potentially be used as
an antiviral strategy against HMPV.

DISCUSSION

Heparan sulfate is a key attachment factor for HMPV binding to
the cell surface. In this study, we used compounds that modulate
the attachment event to characterize the interaction between
HMPV and HS. Our results support a model in which HMPV F
mediates a direct binding interaction to HS, which can be inhib-
ited by sulfated polysaccharides, specifically sulfated in the O po-
sition, and HS occluding compounds (Fig. 8). Whether these ap-
proaches can be used simultaneously to achieve greater inhibition
of HMPV infection synergistically remains to be determined. Our
results further indicate that HS in the airway epithelium serves as
a binding factor during infection at the apical surface and suggest
that HS modulating compounds may serve as a platform for po-
tential HMPV antiviral development.

Iota-carrageenan treatment of HMPV resulted in inhibition of
attachment (Fig. 2D) and infection (Fig. 2A and C) in bronchial
epithelial cells and polarized airway tissues (Fig. 2F). The anti-
HMPV activity of a sulfated polysaccharide has been previously
reported using native and depolymerized galactans isolated from
the red seaweed Cryptonemia seminervis (66). Although iota-car-
rageenan is a highly heterogeneous polysaccharide with regard to
size, it is unclear whether its molecular mass is important in the
inhibition of the viral interaction with heparan sulfate. It has been
shown that depolymerized galactans ranging in molecular masses
from 52 to 64 kDa were able to inhibit HMPV infection, as well as
the intact polysaccharide, suggesting that low-molecular-mass
sulfated polysaccharides can have potent antiviral activity (66).
The potent anti-HMPV effect of iota-carrageenan on HMPV in-

FIG 7 Treatment of HAE tissues with SB105-A10 reduces HMPV infection. (A) HAE tissues were treated with 2 �M SB105-A10 or vehicle (untreated) and
infected with rgHMPV or rgPIV5 at an MOI of 5. Tissues were imaged at 48 h postinfection at �5 magnification. (B) Quantification of HAE tissue infection. Data
points are means 
 the standard deviations of triplicate measurements and are representative of a minimum of three independent experiments.*, Statistical
significance (P � 0.0001).
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fection in both cells and tissue models has potential as a respira-
tory therapy, especially since iota-carrageenan has been shown to
be safe to use in humans (46, 49, 67). Iota-carrageenan application
in the form of a nasal spray in a randomized clinical trial, which
included detection of rhinovirus, coronavirus types OC43 and
229E, influenza virus types A and B, HMPV, RSV, and PIV types 1,
2, and 3, led to a reduction in viral titers and fewer days of symp-
tomatic illness (49). Its efficacy to specifically reduce HMPV in-
fection in humans remains to be determined.

To better understand the structural features of heparan sulfate
required for recognition by HMPV, we used a minilibrary of vari-
ably sulfated heparan-like K5 polysaccharide derivatives. Interest-
ingly, our results highlight that variations in the structure of the
K5 derivatives, namely, the position and degree of sulfation, can
modulate the selectivity and potency of their activities against
HMPV (Fig. 4B). The highly sulfated K5 polysaccharides exhib-
ited the greatest inhibition of HMPV infection, suggesting that
negative charges play a role in interacting with F (Fig. 4B). The
highly sulfated K5-OS(H) and K5-N,OS(H) have been shown to
inhibit dengue virus attachment to microvascular endothelial cells
by interacting with the viral envelope protein, as shown by surface
plasmon resonance (SPR) analysis using the receptor-binding do-
main III of the E protein (56). Our results support the model that
HMPV binding to HS mediated by F involves charge-charge in-
teraction, possibly by a cluster of exposed positively charged resi-
dues on F. This is demonstrated by the very high inhibitory activ-
ity exerted by K5-OS (H) (Fig. 4B, D, and E). This finding suggests
the interaction between HMPV F and HS depends on a specific
sulfation pattern rather than overall negative charges alone. Since
the N-sulfated K5 derivatives are less effective in inhibiting the
binding of HMPV, we can conclude that O-sulfate groups are
important for HMPV F-HS interactions. Interestingly, the most
effective fractions of depolymerized galactans to inhibit HMPV
infection have the sulfate modifications principally on C-2 and
C-6 of the galactose sugars (66). These results further support the

importance of O-sulfate groups inhibiting the HS interaction with
HMPV F and also suggest that the sugar backbone of the polysac-
charide is not the main determinant of the antiviral activity. Fur-
thermore, it has been shown RSV has entirely different sulfation
requirements for binding to HS, since N-sulfation is required,
whereas O-sulfation is dispensable (68), demonstrating that the
binding between viruses and surface HSs are very specific.

Interestingly, binding experiments in the present study dem-
onstrated a greater affinity of �G and �G�SH HMPV to bind
BEAS-2B cells than WT HMPV (Fig. 2D and 6D), since the un-
treated control bands consistently showed higher levels of particle
binding for the recombinant viruses compared to the WT, despite
equivalent number of particles added to the cells. Analysis for F
content in the recombinant HMPV viruses did not reveal a greater
F content relative to the M viral protein (Fig. 3D). We have pre-
viously reported that the �G and �G�SH recombinant viruses
bind and infect at WT levels in other cell types, suggesting that
there may be cell-type-specific differences in binding. Taken to-
gether, these results suggest that SH and G negatively modulate
binding in BEAS-2B cells, and thus their absence results in more
efficient particle binding. Both HMPV SH and G have been pre-
viously reported to modulate events in HMPV entry. Our group
has shown SH can modulate fusion activity of F (69). Further-
more, HMPV G and SH have been previously shown to negatively
modulate HMPV entry, as particle uptake by micropinocytosis in
dendritic cells is enhanced for recombinant HMPV lacking G and
SH (70). Soluble HMPV G has been shown to bind HS in vitro
(71), which suggests that it may have some interaction with HS at
the surfaces of cells and the apical surfaces of HAE cultures. How-
ever, results in monolayer cells suggest that HMPV F is the prin-
cipal driver of particle interaction with HS (Fig. 2D). Further stud-
ies with recombinant HMPV lacking G and/or SH are necessary to
determine what role these proteins may play during the critical
early steps in HMPV infection of cell culture and HAE model
systems.

Treating the cells and tissues with SB105-A10, which specifi-
cally occludes any ligand binding to HSPGs, resulted in a signifi-
cant inhibition of HMPV binding and infection. Our results fur-
ther support the model that HMPV uses HS as an attachment
factor due to a direct binding interaction with F. While adhered
immortalized cells readily express accessible heparan sulfate, it is
less clear where HS localizes in the respiratory epithelium in vivo.
Based on detection by immunohistochemistry of human epithe-
lial tissue, heparan sulfate has been previously hypothesized to
localize exclusively to the basolateral epithelium (50), making it
unclear how a respiratory virus would access HS to infect apically.
The results in this study demonstrate that HMPV can infect po-
larized airway tissues at the apical surface and that HS occlusion
inhibits this apical infection, suggesting that HS is found at suffi-
cient levels to promote attachment at the apical surface of the
airway. HS occlusion with SB105-A10 has also been shown to
inhibit RSV infection at the apical surfaces of HAE tissues (54). HS
modification is found on a number of transmembrane proteins,
and the two main protein families with HS are syndecans and
glypicans. Syndecans have been shown to serve as receptors for
other HS-binding viruses, including hepatitis C virus (72), dengue
virus (73), and HIV (30). Anti-syndecan-1 antibodies have re-
cently been shown to block RSV infection at the apical surface of
human airway epithelium cultures (74). The role of a specific
HSPG, such as one of the syndecan proteins, in HMPV infection

FIG 8 Model for inhibition of HMPV infection by interference between F and
heparan sulfate. HMPV utilizes F for initial attachment to heparan sulfate
found on the surface of target cells, with the potential involvement of an un-
identified receptor necessary to complete entry. Sulfated polysaccharides, iota-
carrageenan and the heparan sulfate-like K5 polysaccharide derivatives, in-
hibit this attachment step. Occluding heparan sulfate with SB105-A10 also
blocks HMPV binding by occluding HS from interaction with HMPV F.
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remains to be determined, but our results strongly indicate that
sufficient levels of HS on HSPGs are exposed at the apical surface
of the airway epithelium for viral infection, including infection
with HMPV.
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